How does a chiller system work?

What exactly is a vapor-compression chiller? How does a cooling tower work? What is a refrigerant cycle?

Accurate solutions for District Energy, HVAC and Energy Efficiency

Download brochure

Learn how these systems operate

Chiller System Overview

 

Chillers use either a vapor-compression or absorption refrigerant cycle to cool a fluid for heat transfer. Both chiller types rely on three basic principles.

  • First - When a liquid is heated it vaporizes into a gas, and when a gas is cooled it condenses into a liquid

  • Second - Lowering the pressure above a liquid reduces its boiling point and increasing the pressure raises it

  • Third - Heat always flows from hot to cold.

Basic Cooling Cycle

 

The basic cooling cycle is the same for both vapor-compression and absorption chillers. Both systems utilize a liquid refrigerant that changes phase to a gas within an evaporator which absorbs heat from the water to be cooled.

 

The refrigerant gas is then compressed to a higher pressure by a compressor or a generator, converted back into a liquid by rejecting heat through a condenser and then expanded to a low- pressure mixture of liquid and vapor that goes back to the evaporator section.  The cycle is repeated.

Vapor Compressor Chiller

 

A vapor-compression chiller consists of four primary components of the vapor-compression refrigeration cycle. They include a compressor, evaporator, condenser and a metering device.

 

Vapor-compression chillers typically utilize HCFC or CFC refrigerants to achieve a refrigeration effect. Compressors are the driving force in a vapor-compression chiller and act as a pump for the refrigerant.

Compressed refrigerant gas is sent from the compressor to a condenser unit that rejects the heat energy from the refrigerant to cooling water or air outside of the system.

 

The transfer of heat allows the refrigerant gas to condense into a liquid which is then sent to a metering device.

The metering device restricts the flow of liquid refrigerant which causes a drop in pressure. The drop in pressure causes the warm refrigerant liquid to change phase from liquid to gas and in doing so absorbs heat from the water to be cooled due to adiabatic flash evaporation.

 

The metering device is positioned so that the expanding refrigerant gas is contained within the evaporator, transferring the heat energy from the water to be cooled into the refrigerant gas. The warm refrigerant gas is then sent back to the compressor to start the cycle over again and the newly chilled water in the separate loop can now be used for cooling.

Absorption Chiller

 

An absorption chiller uses a heat source to drive the refrigeration cycle in place of a mechanical compressor. Absorption chillers utilize two fluids which include a refrigerant, typically water and an absorbent, typically a lithium bromide solution or ammonia.

 

These liquids are separated and recombined in the absorption cycle where due to the low pressure conditions the water can more easily change phase than it normally would, and the high affinity of the two liquids promotes easy absorption.

 

The cycle begins with a mixture of liquid refrigerant water and absorbent that is heated at a higher pressure to boil the water out of solution. The refrigerant water vapor is then sent past a condenser coil where heat rejected and it is condensed into a high pressure liquid. The liquid refrigerant water is then sent to the lower pressure evaporator where through adiabatic flash evaporation returns to a gas, absorbing the heat from the water to be chilled. The concentrated liquid absorbent from the generator is sent back to be recombined with the low-pressure refrigerant vapors returning from the evaporator starting the cycle over again. 

How can clamp-on ultrasonic flow meters save you energy costs?

Lower your energy costs with Siemens clamp-on flow technology!

 

Clamp-on ultrasonic flow meters are valuable tools for helping district energy providers, building managers and others effectively optimize system efficiency, reduce energy consumption – and keep costs low. 

Download, Support, Services

Find downloads, support and services for Siemens Process Instrumentation.
Support Request

The fastest way to the experts

Proposed solutions for your queries and direct access to our experts in Technical Support.

Service offers

To remain competitive, companies in industry must ensure – and ideally increase – the availability and productivity of machines and plants. As your partner, we offer a unique range of services and support based on our extensive technology and industry expertise.

Service catalog

As your partner, we offer a unique range of services and support based on our extensive technology and industry expertise. With our offerings, you can expect a high degree of reliability and a successful digital future for your company.

Well trained for excellent handling

Receive standardized or individual expertise directly from the manufacturer – with training centers in more than 60 countries.

functional safety

Safety integrated

Safety is key in the process industries. A failure in instruments relevant for safety may have serious implications for humans, the process and the environment. Therefore, a wide range of our process instruments come with on-board safety features for maximum risk reduction.

Contact

How can we help you?

Whether you need to measure pressure, temperature, flow, level or weight, Siemens has best-in-class instruments to suit the unique needs of your plant or application - along with a global network of technical support available 24 hours a day, 7 days a week. Our high-performance and cost-efficient range of industrial solutions also includes devices for valve positioning, process protection, recording, controlling, communication and more.

Customer Support: 1-800-333-7421

Contact Us